Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Pharmacol ; 61: 127-135, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34753035

RESUMO

While current multiple sclerosis therapies are focused on immunomodulation, thereby slowing down disease progression, scientific interest has nowadays been shifted toward regenerative therapies aiming at reversing already existing deficits. The application of chemical compounds was proven to be valuable for the understanding of oligodendrogenesis and for exposing mechanisms that can boost remyelination. However, sufficient myelin repair has not been achieved yet, thus underscoring the need for more studies toward this unmet clinical goal. In this regard, many research groups have significantly contributed to the field via developing compound screening approaches or using single substances. We, here, present an overview of recent studies addressing the identification of myelin repair drugs and provide insights into technical aspects and identified substances.


Assuntos
Esclerose Múltipla , Remielinização , Humanos , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina
2.
Front Cell Neurosci ; 15: 653075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796011

RESUMO

Neuropathological diseases of the central nervous system (CNS) are frequently associated with impaired differentiation of the oligodendroglial cell lineage and subsequent alterations in white matter structure and dynamics. Down syndrome (DS), or trisomy 21, is the most common genetic cause for cognitive impairments and intellectual disability (ID) and is associated with a reduction in the number of neurons and oligodendrocytes, as well as with hypomyelination and astrogliosis. Recent studies mainly focused on neuronal development in DS and underestimated the role of glial cells as pathogenic players. This also relates to C21ORF91, a protein considered a key modulator of aberrant CNS development in DS. We investigated the role of C21orf91 ortholog in terms of oligodendrogenesis and myelination using database information as well as through cultured primary oligodendroglial precursor cells (OPCs). Upon modulation of C21orf91 gene expression, we found this factor to be important for accurate oligodendroglial differentiation, influencing their capacity to mature and to myelinate axons. Interestingly, C21orf91 overexpression initiates a cell population coexpressing astroglial- and oligodendroglial markers indicating that elevated C21orf91 expression levels induce a gliogenic shift towards the astrocytic lineage reflecting non-equilibrated glial cell populations in DS brains.

3.
EBioMedicine ; 65: 103276, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33714029

RESUMO

BACKGROUND: In multiple sclerosis loss of myelin and oligodendrocytes impairs saltatory signal transduction and leads to neuronal loss and functional deficits. Limited capacity of oligodendroglial precursor cells to differentiate into mature cells is the main reason for inefficient myelin repair in the central nervous system. Drug repurposing constitutes a powerful approach for identification of pharmacological compounds promoting this process. METHODS: A phenotypic compound screening using the subcellular distribution of a potent inhibitor of oligodendroglial cell differentiation, namely p57kip2, as differentiation competence marker was conducted. Hit compounds were validated in terms of their impact on developmental cell differentiation and myelination using both rat and human primary cell cultures and organotypic cerebellar slice cultures, respectively. Their effect on spontaneous remyelination was then investigated following cuprizone-mediated demyelination of the corpus callosum. FINDINGS: A number of novel small molecules able to promote oligodendroglial cell differentiation were identified and a subset was found to foster human oligodendrogenesis as well as myelination ex vivo. Among them the steroid danazol and the anthelminthic parbendazole were found to increase myelin repair. INTERPRETATION: We provide evidence that early cellular processes involved in differentiation decisions are applicable for the identification of regeneration promoting drugs and we suggest danazol and parbendazole as potent therapeutic candidates for demyelinating diseases. FUNDING: This work was supported by the Jürgen Manchot Foundation, Düsseldorf; Research Commission of the Medical Faculty of Heinrich-Heine-University Düsseldorf; Christiane and Claudia Hempel Foundation; Stifterverband/Novartisstiftung; James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung and International Progressive MS Alliance (BRAVEinMS).


Assuntos
Diferenciação Celular/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Benzimidazóis/farmacologia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Danazol/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Ratos , Bibliotecas de Moléculas Pequenas/química
4.
Glia ; 68(2): 393-406, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31633850

RESUMO

Apart from dedicated oligodendroglial progenitor cells, adult neural stem cells (aNSCs) can also give rise to new oligodendrocytes in the adult central nervous system (CNS). This process mainly confers myelinating glial cell replacement in pathological situations and can hence contribute to glial heterogeneity. Our previous studies demonstrated that the p57kip2 gene encodes an intrinsic regulator of glial fate acquisition and we here investigated to what degree its modulation can affect stem cell-dependent oligodendrogenesis in different CNS environments. We therefore transplanted p57kip2 knockdown aNSCs into white and gray matter (WM and GM) regions of the mouse brain, into uninjured spinal cords as well as in the vicinity of spinal cord injuries and evaluated integration and differentiation in vivo. Our experiments revealed that under healthy conditions intrinsic suppression of p57kip2 as well as WM localization promote differentiation toward myelinating oligodendrocytes at the expense of astrocyte generation. Moreover, p57kip2 knockdown conferred a strong benefit on cell survival augmenting net oligodendrocyte generation. In the vicinity of hemisectioned spinal cords, the gene knockdown led to a similar induction of oligodendroglial features; however, newly generated oligodendrocytes appeared to suffer more from the hostile environment. This study contributes to our understanding of mechanisms of adult oligodendrogenesis and glial heterogeneity and further reveals critical factors when considering aNSC mediated cell replacement in injury and disease.


Assuntos
Substância Cinzenta/metabolismo , Células-Tronco Neurais/citologia , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Ratos
5.
J Neuroinflammation ; 15(1): 76, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534752

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease of the central nervous system (CNS) which in most cases initially presents with episodes of transient functional deficits (relapsing-remitting MS; RRMS) and eventually develops into a secondary progressive form (SPMS). Aside from neuroimmunological activities, MS is also characterized by neurodegenerative and regenerative processes. The latter involve the restoration of myelin sheaths-electrically insulating structures which are the primary targets of autoimmune attacks. Spontaneous endogenous remyelination takes place even in the adult CNS and is primarily mediated by activation, recruitment, and differentiation of resident oligodendroglial precursor cells (OPCs). However, the overall efficiency of remyelination is limited and further declines with disease duration and progression. From a therapeutic standpoint, it is therefore key to understand how oligodendroglial maturation can be modulated pharmacologically. Teriflunomide has been approved as a first-line treatment for RRMS in the USA and the European Union. As the active metabolite of leflunomide, an established disease-modifying anti-rheumatic drug, it mainly acts via an inhibition of de novo pyrimidine synthesis exerting a cytostatic effect on proliferating B and T cells. METHODS: We investigated teriflunomide-dependent effects on primary rat oligodendroglial homeostasis, proliferation, and differentiation related to cellular processes important for myelin repair hence CNS regeneration in vitro. To this end, several cellular parameters, including specific oligodendroglial maturation markers, in vitro myelination, and p53 family member signaling, were examined by means of gene/protein expression analyses. The rate of myelination was determined using neuron-oligodendrocyte co-cultures. RESULTS: Low teriflunomide concentrations resulted in cell cycle exit while higher doses led to decreased cell survival. Short-term teriflunomide pulses can efficiently promote oligodendroglial cell differentiation suggesting that young, immature cells could benefit from such stimulation. In vitro myelination can be boosted by means of an early stimulation window with teriflunomide. p73 signaling is functionally involved in promoting OPC differentiation and myelination. CONCLUSION: Our findings indicate a critical window of opportunity during which regenerative oligodendroglial activities including myelination of CNS axons can be stimulated by teriflunomide.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Crotonatos/farmacologia , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Toluidinas/farmacologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hidroxibutiratos , Carioferinas/genética , Carioferinas/metabolismo , Masculino , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nitrilas , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...